Assigning Main Orientation to an EOH Descriptor on Multispectral Images

نویسندگان

  • Yong Li
  • Xiang Shi
  • Lijun Wei
  • Junwei Zou
  • Fang Chen
چکیده

This paper proposes an approach to compute an EOH (edge-oriented histogram) descriptor with main orientation. EOH has a better matching ability than SIFT (scale-invariant feature transform) on multispectral images, but does not assign a main orientation to keypoints. Alternatively, it tends to assign the same main orientation to every keypoint, e.g., zero degrees. This limits EOH to matching keypoints between images of translation misalignment only. Observing this limitation, we propose assigning to keypoints the main orientation that is computed with PIIFD (partial intensity invariant feature descriptor). In the proposed method, SIFT keypoints are detected from images as the extrema of difference of Gaussians, and every keypoint is assigned to the main orientation computed with PIIFD. Then, EOH is computed for every keypoint with respect to its main orientation. In addition, an implementation variant is proposed for fast computation of the EOH descriptor. Experimental results show that the proposed approach performs more robustly than the original EOH on image pairs that have a rotation misalignment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Addendum: Li, Y.; Shi, X.; Wei, L.; Zou, J.; Chen, F. Assigning Main Orientation to an EOH Descriptor on Multispectral Images. Sensors 2015, 15, 15595–15610.

1 Beijing University of Posts and Telecommunications, School of Electronic Engineering, Rd. Xitucheng 10#, Beijing 100876, China; [email protected] (X.S.); [email protected] (L.W.); [email protected] (J.Z.) 2 Beijing Anzhen Hospital, Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing 100029, China; [email protected] * Correspondence: yli@...

متن کامل

Multispectral Image Feature Points

This paper presents a novel feature point descriptor for the multispectral image case: Far-Infrared and Visible Spectrum images. It allows matching interest points on images of the same scene but acquired in different spectral bands. Initially, points of interest are detected on both images through a SIFT-like based scale space representation. Then, these points are characterized using an Edge ...

متن کامل

An Advanced Rotation Invariant Descriptor for SAR Image Registration

The Scale-Invariant Feature Transform (SIFT) algorithm and its many variants have been widely used in Synthetic Aperture Radar (SAR) image registration. The SIFT-like algorithms maintain rotation invariance by assigning a dominant orientation for each keypoint, while the calculation of dominant orientation is not robust due to the effect of speckle noise in SAR imagery. In this paper, we propos...

متن کامل

An Automatic Detection of the Fire Smoke Through Multispectral Images

One of the consequences of a fire is smoke. Occasionally, monitoring and detection of this smoke can be a solution to prevent occurrence or spreading a fire. On the other hand, due to the destructive effects of the smoke spreading on human health, measures can be taken to improve the level of health services by zoning and monitoring its expansion process. In this paper, an automated method is p...

متن کامل

Automatic Road Detection and Extraction From MultiSpectral Images Using a New Hierarchical Object-based Method

Road detection and Extraction is one of the most important issues in photogrammetry, remote sensing and machine vision. A great deal of research has been done in this area based on multispectral images, which are mostly relatively good results. In this paper, a novel automated and hierarchical object-based method for detecting and extracting of roads is proposed. This research is based on the M...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2015